友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
恐怖书库 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

无垠大道-第231部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!



    直到其后的某个时刻,一种未知的违反重子数守恒的反应过程出现,它使夸克和轻子的数量略微超过了反夸克和反轻子的数量——超出范围大约在三千万分之一的量级上,这一过程被称作重子数产生。这一机制导致了当今宇宙中物质相对于反物质的主导地位。

    随着宇宙的膨胀和温度进一步的降低,粒子所具有的能量也普遍逐渐下降。当能量降低到1太电子伏特(1012ev)时产生了对称破缺。这一相变使基本粒子和基本相互作用形成了当今我们看到的样子。宇宙诞生的10^…11秒之后,大爆炸模型中猜测的成分就进一步减少了,因为此时的粒子能量已经降低到了高能物理实验所能企及的范围。

    10^…6秒之后,夸克和胶子结合形成了诸如质子和中子的重子族,由于夸克的数量要略高于反夸克,重子的数量也要略高于反重子。此时宇宙的温度已经降低到不足以产生新的质子-反质子对,从而即刻导致了粒子和反粒子之间的质量湮灭,这使得原有的质子和中子仅有十亿分之一的数量保留下来,而对应的所有反粒子则全部湮灭。

    大约在1秒之后,电子和正电子之间也发生了类似的过程。经过这一系列的湮灭。剩余的质子、中子和电子的速度降低到相对论性以下,而此时的宇宙能量密度的主要贡献来自湮灭产生的大量光子。少部分来自正反中微子,因为正反中微子数量极微。

    在大爆炸发生的几分钟后,宇宙的温度降低到大约十亿开尔文的量级,密度降低到大约空气密度的水平。

    少数质子和所有中子结合,组成氘和氦的原子核,这个过程叫做 “太初核”合成。而大多数质子没有与中子结合,形成了氢的原子核。

    随着宇宙的冷却,宇宙能量密度的主要来自静止质量产生的引力的贡献,并超过原先光子以辐射形式的能量密度。

    在大约37。9万年之后,电子和原子核结合成为原子(主要是氢原子),而物质通过脱耦发出辐射并在宇宙空间中相对自由的传播,这个辐射的残迹就形成了今天的宇宙微波背景辐射。

    虽然宇宙在大尺度上物质几乎均一分布,但仍存在某些密度稍大的区域,因而在此后相当长的一段时间内这些区域内的物质通过引力作用吸引附近的物质,从而变得密度更大,并形成了气体云、恒星、星系等其他在今天的天文学上可观测的结构。

    这一过程的具体细节取决于宇宙中物质的形式和数量,其中形式可能有三种:冷暗物质、热暗物质和重子物质。

    来自的目前最佳观测结果表明,宇宙中占主导地位的物质形式是冷暗物质,而其他两种物质形式在宇宙中所占比例不超过18%。另一方面,对ia型超新星和宇宙微波背景辐射的独立观测表明,当今的宇宙被一种被称作暗能量的未知能量形式主导着,暗能量被认为渗透到空间中的每一个角落。

    观测显示,当今宇宙的总能量密度中有72%的部分是以暗能量这一形式存在的。根据推测,在宇宙非常年轻时暗能量就已经存在,但此时的宇宙尺度很小而物质间彼此距离很近,因而在那时引力的效果显著从而减缓了宇宙的膨胀。

    但经过了几十上百亿年的膨胀,不断增长的暗能量开始让宇宙膨胀缓慢加速。表述暗能量的最简洁方法是在ayst引力场方程中添加所谓宇宙常数项,但这仍然无法回答暗能量的构成、形成机制等问题,以及与此伴随的一些更基础问题:例如关于它状态方程的细节,以及它与粒子物理学中标准模型的内在联系,这些未解决的问题仍然有待理论和实验观测的进一步研究。

    大爆炸理论的建立基于了两个基本假设:物理定律的普适性和宇宙学原理。宇宙学原理是指在大尺度上宇宙是均匀且各向同性的。

    这些观点起初是作为先验的公理被引入的。但现今已有相关研究工作试图对它们进行验证。例如对第一个假设而言。已有实验证实在宇宙诞生以来的绝大多数时间内。精细结构常数的相对误差值不会超过10^…5。

    此外,通过对太阳系和双星系统的观测,广义相对论已经得到了非常精确的实验验证;而在更广阔的宇宙学尺度上,大爆炸理论在多个方面经验性取得的成功也是对广义相对论的有力支持。

    假设从地球上看大尺度宇宙是各向同性的,宇宙学原理可以从一个更简单的哥白尼原理中导出。哥白尼原理是指不存在一个受偏好的观测者或观测位置。

    根据对微波背景辐射的观测,宇宙学原理已经被证实在10^…5的量级上成立,而宇宙在大尺度上观测到的均匀性则在10%的量级。fl度规主条目:fl度规和空间的度规膨胀;广义相对论采用度规来描述时空的几何属性,度规能够给出时空中任意两点之间的间隔。

    这些点可以是恒星、星系或其他天体。它们在时空中的位置可以用一个遍布整个时空的坐标卡或“网格”来说明。根据宇宙学原理,在大尺度上度规应当是均匀且各向同性的,唯一符合这一要求的度规叫做flrw度规。

    这一度规包含一个含时的尺度因子,它描述了宇宙的尺寸如何随着时间变化,这使得我们可以选择建立一个方便的坐标系即所谓共动坐标系。在这个坐标系中网格随着宇宙一起膨胀,从而仅由于宇宙膨胀而发生运动的天体将被固定在网格的特定位置上。虽然这些共动天体两者之间的坐标距离(共动距离)保持不变,它们彼此间实际的物理距离是正比于宇宙的尺度因子而膨胀的。

    大爆炸的本质并不是物质的爆炸从而向外扩散至整个空旷的宇宙空间,而是每一处的空间本身随着时间的膨胀,从而两个共动天体之间的物理距离在不断增长。

    由于flrw度规假设了宇宙中物质和能量的均匀分布,它只对宇宙在大尺度下的情形适用——对于像我们的星系这样局部的物质聚集情形。引力的束缚作用要远大于空间度规膨胀的影响,从而不能采用flrw度规。

    大爆炸时空的一个重要特点就是视界的存在:由于宇宙具有有限的年龄。并且光具有有限的速度,从而可能存在某些过去的事件无法通过光向我们传递信息。

    从这一分析可知,存在这样一个极限或称为过去视界,只有在这个极限距离以内的事件才有可能被观测到。另一方面,由于空间在不断膨胀,并且越遥远的物体退行速度越大,从而导致从我们这里发出的光有可能永远也无法到达那里。

    从这一分析可知,存在这样一个极限或称为未来视界,只有在这个极限距离以内的事件才有可能被我们所影响。以上两种视界的存在与否取决于描述我们宇宙的flrw模型的具体形式:我们现有对极早期宇宙的认知意味着宇宙应当存在一个过去视界,不过在实验中我们的观测仍然被早期宇宙对电磁波的不透明性所限制,这导致我们在过去视界因空间膨胀而退行的情形下依然无法通过电磁波观测到更久远的事件。

    另一方面,假如宇宙的膨胀一直加速下去,宇宙也会存在一个未来视界。

    大爆炸理论最早也最直接的观测证据包括从星系红移观测到的哈勃膨胀、对宇宙微波背景辐射的精细测量、宇宙间轻元素的丰度,而今大尺度结构和星系演化也成为了新的支持证据。这四种观测证据有时被称作“大爆炸理论的四大支柱”。

    对遥远星系和类星体的观测表明这些天体存在红移——从这些天体发出的电磁**长会变长。通过观测取得星体的频谱,而构成天体的化学元素的原子与电磁波的相互作用对应着特定样式的吸收和发射谱线,将两者进行比对则可发现这些谱线都向波长更长的一端移动。

    这些红移是均匀且各向同性的。也就是说在观测者看来任意方向上的天体都会发生均匀分布的红移。如果将这种红移解释为一种多普勒频移。则可进而推知天体的退行速度。

    对于某些星系。它们到地球的距离可以通过宇宙距离尺度来估算出。如果将各个星系的退行速度和它们到地球的距离一一列出,则可发现两者存在一个线性关系即哈勃定律:v=hd,其中,v 是星系或其他遥远天体的退行速度,d 是距天体的共动固有距离,h 是哈勃常数,根据最近的测量结果为70。1 ± 1。3 千米/秒/秒差距。

    根据哈勃定律我们的宇宙图景有两种可能:或者我们正处于空间膨胀的正中央,从而所有的星系都在远离我们——这与哥白尼原理相违背——或者宇宙的膨胀是各处都相同的。

    从广义相对论推测出宇宙正在膨胀的假说。是由ylsd和qz分别在一九二二年和一九二七年各自提出的,都要早于哈勃在一九二七年所进行的实验观测和分析工作。宇宙膨胀的理论后来成为了建立大爆炸理论的基石。

    大爆炸理论要求哈勃定律在任何情况下都成立,注意这里v、d和h随着宇宙膨胀都在不断变化。对于距离远小于可观测宇宙尺度的情形,哈勃红移可以被理解为因退行速度v造成的多普勒频移,但本质上哈勃红移并不是真正的多普勒频移,而是在光从遥远星系发出而后被观测者接收的这个时间间隔内,宇宙膨胀的结果。

    天文学上观测到的高度均匀分布且各向同性的红移,以及其他很多观测证据,都支持着宇宙在各个方向上看起来都相同这一宇宙学原理。

    二零零零年,人们通过测量宇宙微波背景辐射对遥远天体系统的动力学所产生的影响。证实了哥白尼原理,即地球相对大尺度宇宙来说绝非宇宙的中心。

    早期宇宙来自大爆炸的微波背景辐射温度要显著高于当今的辐射余温。而几十亿年来微波背景辐射均匀降温的事实只能被解释为宇宙空间正在进行着度规膨胀,并排除了我们较为接近一个特殊的爆炸中心的
返回目录 上一页 下一页 回到顶部 0 1
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!