友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
投资学(第4版)-第116部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
解出的零息票债券价格为dt。这样,对每一种债券我们有:
P1 =d1C F11+d2C F1 2+d3C F1 3+。+e1
P2 =d1C F2 1+d2C F2 2+d3C F2 3+。+e2
P3 =d1C F3 1+d2C F3 2+d3C F3 3+。+e3 ( 1 5 … 6 )
。。
Pn =d1C Fn1+d2C Fn2+d3C Fn3+。+en
以上各式都等于债券的现金流直到支付时为止的总现金流的价格。每一等式中最
后一项ei为误差项,它是对等式中债券预期价格的偏差。
统计系的学生知道用回归分析能估算出上式的值。其中的因变量是债券价格,自
变量为现金流,系数dt可以从已有的数据资料中得到' 2 '。dt的估计值就是我们所说的1
美元在时间t的折现值。不同时间支付的dt被称为折现函数,因为它给出了1美元作为
时间函数的折现值。从折现函数中可知,它是一系列不同到期日的零息票债券价格的
'1' 我们将在后面的篇幅中考虑形成这些误差项的一些原因。
'2' 实际上,称作“齿槽技术”的变量回归分析通常用来估计系数,这种方法是首先由M c C u l l o c h在以下
文章中提出的:J。 Huston McCulloch;“Measuring the Term Structure of Interest Rates;”Journal of
Business 44 (January 1971); and“The Tax Adjusted Yield Curve;”Journal of Finance 30 (June 1975)。
下载
第15章利率的期限结构
375
等价物,我们可以计算纯零息票债券的收益率。在这个过程中为了避免不必要的复杂
性,我们把国债看作是无风险的债券。
在结束对收益率曲线的测度问题的讨论之前,有必要讨论一下误差项的问题。折现
函数确定了与现值相等的价格,但为什么并非所有债券的价格都与折现函数丝毫不差?
这里有两个相关的因素没有在1 5 … 6式的回归分析中加以考虑:税收和与债券相关的期权。
说税收影响债券价格是因为投资者关心他们的税后收入。因此,应把债券的利息
支付看作是净税收。同理,如债券未按面值出售,我们就可通过摊提价格与面值的差
来把它归于内部收益率。用数学公式表现这些非常困难,因为不同的投资者按不同的
等级纳税,这意味着每一债券的净税收现金流都决定于各自不同的债券所有者的背景。
而且,1 5 … 6式还含有持有债券直到期满的假设:它将所有息票和本金的支付都作折现。
这样处理肯定忽略了投资者在到期前售出债券的期权,从而忽略了可以从中得出不同
的收入流。再者,它还忽略了投资者进行税收安排期权的能力。例如,一个税收等级
将随时间改变的投资者,在税率最低时实现资本所得可能最为有利。
影响债券价格的另一因素是提前赎回债券条款。首先,如果债券是可赎回的,我
们如何知道1 5 … 6式中后续年份的第一回收期中是否含有息票支付?同理,本金偿还日
也变得模糊不清。更重要的是,我们应知道只有可赎回债券的发行者在赎回有利的时
候会行使赎回的期权。相反,提前赎回债券条款是将出售债券期权的价值从债券持有
人手中转移到债券的发行者手中变成赎回的期权。因此,赎回的特征将影响债券的价
格,并且带来了1 5 … 6式中的误差项。
最后,我们必须认识到,以报价为基础的收益率曲线通常不太准确,金融报刊上
的报价可能已失时效(如已过期),即便仅仅失效几个小时。而且,它们可能并不代
表交易者实际上愿意成交的价格。
15。3 利率的不确定性与远期利率
我们现在开始讨论远期利率不确定条件下的期限结构问题,这是一个更为复杂的
分析。我们认为,在一个确定的世界中,有相同到期日的不同投资战略一定会提供相
同的报酬率。例如,两个连续的一年零息票投资提供的总收益率,应与一个等额的2
年零息票投资的收益率一样。因此,在确定的条件下,我们有,
( 1+r1) ( 1+r2)=( 1+y2)2
当r2为未知的情况下,应怎么办?
例如,再看表1 5 … 1,假定今天的利率r1 =8%,明年的短期利率预期为E(r2)=1 0%,
如果债券的价格仅建立在利率的预期值之上,那么,一年期零息票债券的卖价为1 000
美元/ 1 。 0 8=9 2 5 。 9 3美元,2年期零息票债券的卖价为1 000美元/ ( 1 。 0 8×1 。 1 0 )=8 4 1 。 7 5美
元,与表1 5 … 2一样。
现在考虑投资者只投资一年的情况。她可能只购买一年期零息票债券,把利率锁
定在无风险的8%,因为她知道到年底时债券的到期价值是1 000美元。她也可能购买2
年期零息票债券,预期收益率也是8%:一年后,债券还有一年到期,一年预期利率为
1 0%,这意味着债券价格为9 0 9 。 0 9美元,也意味着一年的持有期回报为8%。但是2年债
券的收益率是有风险的。如果第二年的利率高于预期,即高于1 0%,债券价格将低于
9 0 9 。 0 9美元,反之,如r2低于1 0%,价格则会高于9 0 9 。 0 9美元。为什么这一短期投资者
在预期收益率为8%时,买有风险的2年期债券并不比买无风险的一年期债券合算?很
清楚,预期收益率不高于8%时,投资者不会持有两年期债券。这要求2年期债券以低
于不计风险时的8 4 1 。 7 5美元的价格销售。
假定仅在价格低于8 1 9美元时,大多数人做短期投资,愿意持有2年期债券。在这
个价格上,两年的预期收益率为11%( 9 0 9 。 0 9 / 8 1 9=1 。 11 )。因此2年期债券的风险溢价就
是3%,它提供了一个11%的预期收益率,而不是8%的1年期债券收益率。在这个风险
376 第四部分固定收益证券
下载
溢价之上,投资者愿意承受利率不确定的价格风险。
在这种情况下,远期利率f2不再等于预期的短期利率E(r2)。虽然,我们假定E(r2)
=1 0%,很容易确认f2 =1 3%。2年零息票债券在卖价为8 1 9美元时的到期收益率为
1 0 。 5%,有
1+f2 =' ( 1+y2)2/ ( 1+y1) '+( 1 。 1 0 52) / ( 1 。 0 8 )=1 。 1 3
这个结果,即远期利率大于预期短期利率,并不令人惊讶。我们定义的远期利率
是在第二年使长短期投资在忽略风险的情况下有相同吸引力的利率。当我们考虑风险
时,显然,短期投资者不愿投资长期债券,除非长期债券提供的预期收益率高于一年
期债券提供的收益率。也就是说,投资者要求持有长期债券时,获得一风险溢价。如
果E(r2)低于盈亏均衡值f2,厌恶风险的投资者会愿意持有长期债券,因为r2的预期越低,
长期债券的预期收益率就越高。
因此,如果大多数人是短期投资者,债券的价格一定是f2大于E(r2)的情况。远期
利率将含有一个与预期未来短期利率相比较的溢价。这一流动溢价(liquidity premium)
抵销了短期投资者面临的价格的不确定性。
概念检验
问题3:假设短期投资者所要求的流动溢价为1%,在f2为1 0%的情况下,E(r2)必须
达到多少?
可能令人难以相信,我们可构想一个长期债券比短期债券更安全的方案。设有一
长期投资者,愿意投资满2年,他可以购买面值为1 000 美元2年期零息票债券,价格为
8 4 1 。 7 5美元。锁定到期收益率为y2 =9%。可供选择的另一方案是他通过再投资的方法,
做两个1年期的投资。在此例中,投资8 4 1 。 7 5美元,经两年的增长变为8 4 1 。 7 5×
( 1 。 0 8 ) ( 1+r2),但具体数额现在不清,因为r2是未知的。第二年的盈亏均衡利率还是远
期利率,即1 0%,因为远期利率被定义为使两种选择的最终值相等的利率。
再投资战略的结清预期值是8 4 1 。 7 5×( 1 。 0 8 ) ' 1+E(r2) '。如果E(r2)等于远期利率f2,
那再投资选择结清额的预期值将等于已知的2年到期债券选择的结清值。
这合情合理吗?再强调一次,仅仅在投资者不顾虑再投资选择最终值的不确定性
风险时,以上假定才是有道理的。无论何时,只要一考虑风险,长期投资者就不愿意
从事再投资,除非它的预期收益率超过2年期债券。在这种情况下,投资者要求,
( 1 。 0 8 ) ' 1+E(r2) '>( 1 。 0 9 )2=( 1 。 0 8 ) ( 1+f2)
这意味着E(r2)大于f2。投资者要求预期第二期利率超过盈亏均衡利率1 0%,而那是
远期利率。
因此,如果所有人都是长期投资者,除非这些债券提供的报酬能承受利率风险,
没有一个人愿意持有短期债券。在这种情况下,债券价格将达到这样一个水平,即在
短期债券上再投资导致比持有长期债券更高的预期收益率。这将导致远期利率低于预
期的未来点利率。
例如,假定E(r2)=11%,流动溢价因而是负的:f2 …E(r2)=1 0% …11%=…1%。这与
我们从前面短期投资例子中所得结论正好相反。显然,远期利率是否等于未来短期利
率的预期取决于投资者对利率风险的承受情况,同时还取决于他们持有与他们的投资
层次无关的债券的意愿。
15。4 期限结构理论
15。4。1 预期假定
最简单的期限结构理论是预期假定(expectations hypothesis )。这一理论以为,
下载
第15章利率的期限结构
377
远期利率等于市场整体对未来短期利率的预期。换句话说,f2 =E(r2),流动溢价为0。
因为f2 =E(r2),我们就可以将长期债券收益率与远期利率的预期相联系。另外,我们
可以用从收益率曲线中得出的远期利率来推断未来短期利率的预期。例如,从1 5 … 5式
我们有:( 1+y2)2=( 1+r1) ( 1+f2),如果预期假定是正确的,该式也可以写成( 1+y2)2=
( 1+r1) '1+E
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!